3.20 \(\int \cot (c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=107 \[ -\frac {(A-2 i B) \left (a^3+i a^3 \tan (c+d x)\right )}{d}+\frac {a^3 (3 A-4 i B) \log (\cos (c+d x))}{d}+4 a^3 x (B+i A)+\frac {a^3 A \log (\sin (c+d x))}{d}+\frac {i a B (a+i a \tan (c+d x))^2}{2 d} \]

[Out]

4*a^3*(I*A+B)*x+a^3*(3*A-4*I*B)*ln(cos(d*x+c))/d+a^3*A*ln(sin(d*x+c))/d+1/2*I*a*B*(a+I*a*tan(d*x+c))^2/d-(A-2*
I*B)*(a^3+I*a^3*tan(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3594, 3589, 3475, 3531} \[ -\frac {(A-2 i B) \left (a^3+i a^3 \tan (c+d x)\right )}{d}+\frac {a^3 (3 A-4 i B) \log (\cos (c+d x))}{d}+4 a^3 x (B+i A)+\frac {a^3 A \log (\sin (c+d x))}{d}+\frac {i a B (a+i a \tan (c+d x))^2}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

4*a^3*(I*A + B)*x + (a^3*(3*A - (4*I)*B)*Log[Cos[c + d*x]])/d + (a^3*A*Log[Sin[c + d*x]])/d + ((I/2)*a*B*(a +
I*a*Tan[c + d*x])^2)/d - ((A - (2*I)*B)*(a^3 + I*a^3*Tan[c + d*x]))/d

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3589

Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]))/((a_.) + (b_.)*tan[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Dist[(B*d)/b, Int[Tan[e + f*x], x], x] + Dist[1/b, Int[Simp[A*b*c + (A*b*d + B*(
b*c - a*d))*Tan[e + f*x], x]/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0]

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \cot (c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx &=\frac {i a B (a+i a \tan (c+d x))^2}{2 d}+\frac {1}{2} \int \cot (c+d x) (a+i a \tan (c+d x))^2 (2 a A+2 a (i A+2 B) \tan (c+d x)) \, dx\\ &=\frac {i a B (a+i a \tan (c+d x))^2}{2 d}-\frac {(A-2 i B) \left (a^3+i a^3 \tan (c+d x)\right )}{d}+\frac {1}{2} \int \cot (c+d x) (a+i a \tan (c+d x)) \left (2 a^2 A+2 a^2 (3 i A+4 B) \tan (c+d x)\right ) \, dx\\ &=\frac {i a B (a+i a \tan (c+d x))^2}{2 d}-\frac {(A-2 i B) \left (a^3+i a^3 \tan (c+d x)\right )}{d}+\frac {1}{2} \int \cot (c+d x) \left (2 a^3 A+8 a^3 (i A+B) \tan (c+d x)\right ) \, dx-\left (a^3 (3 A-4 i B)\right ) \int \tan (c+d x) \, dx\\ &=4 a^3 (i A+B) x+\frac {a^3 (3 A-4 i B) \log (\cos (c+d x))}{d}+\frac {i a B (a+i a \tan (c+d x))^2}{2 d}-\frac {(A-2 i B) \left (a^3+i a^3 \tan (c+d x)\right )}{d}+\left (a^3 A\right ) \int \cot (c+d x) \, dx\\ &=4 a^3 (i A+B) x+\frac {a^3 (3 A-4 i B) \log (\cos (c+d x))}{d}+\frac {a^3 A \log (\sin (c+d x))}{d}+\frac {i a B (a+i a \tan (c+d x))^2}{2 d}-\frac {(A-2 i B) \left (a^3+i a^3 \tan (c+d x)\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 8.48, size = 281, normalized size = 2.63 \[ \frac {a^3 \sec (c) \sec ^2(c+d x) (\cos (3 d x)+i \sin (3 d x)) \left (2 \cos (c) \left ((3 A-4 i B) \log \left (\cos ^2(c+d x)\right )+A \log \left (\sin ^2(c+d x)\right )+8 i A d x+8 B d x-2 i B\right )+\cos (c+2 d x) \left ((3 A-4 i B) \log \left (\cos ^2(c+d x)\right )+8 d x (B+i A)+A \log \left (\sin ^2(c+d x)\right )\right )-4 i A \sin (c+2 d x)+8 i A d x \cos (3 c+2 d x)+3 A \cos (3 c+2 d x) \log \left (\cos ^2(c+d x)\right )+A \cos (3 c+2 d x) \log \left (\sin ^2(c+d x)\right )+4 i A \sin (c)-12 B \sin (c+2 d x)+8 B d x \cos (3 c+2 d x)-4 i B \cos (3 c+2 d x) \log \left (\cos ^2(c+d x)\right )+12 B \sin (c)\right )}{8 d (\cos (d x)+i \sin (d x))^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(a^3*Sec[c]*Sec[c + d*x]^2*(Cos[3*d*x] + I*Sin[3*d*x])*((8*I)*A*d*x*Cos[3*c + 2*d*x] + 8*B*d*x*Cos[3*c + 2*d*x
] + 3*A*Cos[3*c + 2*d*x]*Log[Cos[c + d*x]^2] - (4*I)*B*Cos[3*c + 2*d*x]*Log[Cos[c + d*x]^2] + A*Cos[3*c + 2*d*
x]*Log[Sin[c + d*x]^2] + 2*Cos[c]*((-2*I)*B + (8*I)*A*d*x + 8*B*d*x + (3*A - (4*I)*B)*Log[Cos[c + d*x]^2] + A*
Log[Sin[c + d*x]^2]) + Cos[c + 2*d*x]*(8*(I*A + B)*d*x + (3*A - (4*I)*B)*Log[Cos[c + d*x]^2] + A*Log[Sin[c + d
*x]^2]) + (4*I)*A*Sin[c] + 12*B*Sin[c] - (4*I)*A*Sin[c + 2*d*x] - 12*B*Sin[c + 2*d*x]))/(8*d*(Cos[d*x] + I*Sin
[d*x])^3)

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 172, normalized size = 1.61 \[ \frac {2 \, {\left (A - 4 i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 2 \, {\left (A - 3 i \, B\right )} a^{3} + {\left ({\left (3 \, A - 4 i \, B\right )} a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, {\left (3 \, A - 4 i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (3 \, A - 4 i \, B\right )} a^{3}\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + {\left (A a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, A a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + A a^{3}\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )}{d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

(2*(A - 4*I*B)*a^3*e^(2*I*d*x + 2*I*c) + 2*(A - 3*I*B)*a^3 + ((3*A - 4*I*B)*a^3*e^(4*I*d*x + 4*I*c) + 2*(3*A -
 4*I*B)*a^3*e^(2*I*d*x + 2*I*c) + (3*A - 4*I*B)*a^3)*log(e^(2*I*d*x + 2*I*c) + 1) + (A*a^3*e^(4*I*d*x + 4*I*c)
 + 2*A*a^3*e^(2*I*d*x + 2*I*c) + A*a^3)*log(e^(2*I*d*x + 2*I*c) - 1))/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x
+ 2*I*c) + d)

________________________________________________________________________________________

giac [B]  time = 1.35, size = 265, normalized size = 2.48 \[ \frac {2 \, A a^{3} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, {\left (3 \, A a^{3} - 4 i \, B a^{3}\right )} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - 4 \, {\left (4 \, A a^{3} - 4 i \, B a^{3}\right )} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + i\right ) + 2 \, {\left (3 \, A a^{3} - 4 i \, B a^{3}\right )} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right ) - \frac {9 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 12 i \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 4 i \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 18 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 28 i \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 4 i \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 9 \, A a^{3} - 12 i \, B a^{3}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

1/2*(2*A*a^3*log(tan(1/2*d*x + 1/2*c)) + 2*(3*A*a^3 - 4*I*B*a^3)*log(tan(1/2*d*x + 1/2*c) + 1) - 4*(4*A*a^3 -
4*I*B*a^3)*log(tan(1/2*d*x + 1/2*c) + I) + 2*(3*A*a^3 - 4*I*B*a^3)*log(tan(1/2*d*x + 1/2*c) - 1) - (9*A*a^3*ta
n(1/2*d*x + 1/2*c)^4 - 12*I*B*a^3*tan(1/2*d*x + 1/2*c)^4 - 4*I*A*a^3*tan(1/2*d*x + 1/2*c)^3 - 12*B*a^3*tan(1/2
*d*x + 1/2*c)^3 - 18*A*a^3*tan(1/2*d*x + 1/2*c)^2 + 28*I*B*a^3*tan(1/2*d*x + 1/2*c)^2 + 4*I*A*a^3*tan(1/2*d*x
+ 1/2*c) + 12*B*a^3*tan(1/2*d*x + 1/2*c) + 9*A*a^3 - 12*I*B*a^3)/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.46, size = 135, normalized size = 1.26 \[ 4 i A x \,a^{3}-\frac {i a^{3} A \tan \left (d x +c \right )}{d}+\frac {4 i A \,a^{3} c}{d}-\frac {i a^{3} B \left (\tan ^{2}\left (d x +c \right )\right )}{2 d}-\frac {4 i a^{3} B \ln \left (\cos \left (d x +c \right )\right )}{d}+\frac {3 A \,a^{3} \ln \left (\cos \left (d x +c \right )\right )}{d}+4 a^{3} B x -\frac {3 a^{3} B \tan \left (d x +c \right )}{d}+\frac {4 a^{3} B c}{d}+\frac {a^{3} A \ln \left (\sin \left (d x +c \right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x)

[Out]

4*I*A*x*a^3-I/d*A*tan(d*x+c)*a^3+4*I/d*A*a^3*c-1/2*I/d*a^3*B*tan(d*x+c)^2-4*I/d*a^3*B*ln(cos(d*x+c))+3/d*A*a^3
*ln(cos(d*x+c))+4*a^3*B*x-3/d*a^3*B*tan(d*x+c)+4/d*a^3*B*c+a^3*A*ln(sin(d*x+c))/d

________________________________________________________________________________________

maxima [A]  time = 0.85, size = 89, normalized size = 0.83 \[ -\frac {i \, B a^{3} \tan \left (d x + c\right )^{2} - 2 \, {\left (d x + c\right )} {\left (4 i \, A + 4 \, B\right )} a^{3} + 4 \, {\left (A - i \, B\right )} a^{3} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 2 \, A a^{3} \log \left (\tan \left (d x + c\right )\right ) - {\left (-2 i \, A - 6 \, B\right )} a^{3} \tan \left (d x + c\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(I*B*a^3*tan(d*x + c)^2 - 2*(d*x + c)*(4*I*A + 4*B)*a^3 + 4*(A - I*B)*a^3*log(tan(d*x + c)^2 + 1) - 2*A*a
^3*log(tan(d*x + c)) - (-2*I*A - 6*B)*a^3*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 6.15, size = 87, normalized size = 0.81 \[ \frac {A\,a^3\,\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )}{d}-\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (B\,a^3+a^3\,\left (2\,B+A\,1{}\mathrm {i}\right )\right )}{d}-\frac {4\,a^3\,\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (A-B\,1{}\mathrm {i}\right )}{d}-\frac {B\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^2\,1{}\mathrm {i}}{2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^3,x)

[Out]

(A*a^3*log(tan(c + d*x)))/d - (tan(c + d*x)*(B*a^3 + a^3*(A*1i + 2*B)))/d - (4*a^3*log(tan(c + d*x) + 1i)*(A -
 B*1i))/d - (B*a^3*tan(c + d*x)^2*1i)/(2*d)

________________________________________________________________________________________

sympy [B]  time = 3.19, size = 233, normalized size = 2.18 \[ \frac {A a^{3} \log {\left (\frac {- A a^{3} + 2 i B a^{3}}{A a^{3} e^{2 i c} - 2 i B a^{3} e^{2 i c}} + e^{2 i d x} \right )}}{d} + \frac {a^{3} \left (3 A - 4 i B\right ) \log {\left (e^{2 i d x} + \frac {- 2 A a^{3} + 2 i B a^{3} + a^{3} \left (3 A - 4 i B\right )}{A a^{3} e^{2 i c} - 2 i B a^{3} e^{2 i c}} \right )}}{d} + \frac {- 2 i A a^{3} - 6 B a^{3} + \left (- 2 i A a^{3} e^{2 i c} - 8 B a^{3} e^{2 i c}\right ) e^{2 i d x}}{- i d e^{4 i c} e^{4 i d x} - 2 i d e^{2 i c} e^{2 i d x} - i d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)

[Out]

A*a**3*log((-A*a**3 + 2*I*B*a**3)/(A*a**3*exp(2*I*c) - 2*I*B*a**3*exp(2*I*c)) + exp(2*I*d*x))/d + a**3*(3*A -
4*I*B)*log(exp(2*I*d*x) + (-2*A*a**3 + 2*I*B*a**3 + a**3*(3*A - 4*I*B))/(A*a**3*exp(2*I*c) - 2*I*B*a**3*exp(2*
I*c)))/d + (-2*I*A*a**3 - 6*B*a**3 + (-2*I*A*a**3*exp(2*I*c) - 8*B*a**3*exp(2*I*c))*exp(2*I*d*x))/(-I*d*exp(4*
I*c)*exp(4*I*d*x) - 2*I*d*exp(2*I*c)*exp(2*I*d*x) - I*d)

________________________________________________________________________________________